Current File : //root/postfix-3.2.0/src/tls/tls_dane.c |
/*++
/* NAME
/* tls_dane 3
/* SUMMARY
/* Support for RFC 6698, 7671, 7672 (DANE) certificate matching
/* SYNOPSIS
/* #include <tls.h>
/*
/* int tls_dane_avail()
/*
/* void tls_dane_flush()
/*
/* void tls_dane_verbose(on)
/* int on;
/*
/* TLS_DANE *tls_dane_alloc()
/*
/* void tls_dane_free(dane)
/* TLS_DANE *dane;
/*
/* void tls_dane_add_ee_digests(dane, mdalg, digest, delim)
/* TLS_DANE *dane;
/* const char *mdalg;
/* const char *digest;
/* const char *delim;
/*
/* int tls_dane_load_trustfile(dane, tafile)
/* TLS_DANE *dane;
/* const char *tafile;
/*
/* int tls_dane_match(TLSContext, usage, cert, depth)
/* TLS_SESS_STATE *TLScontext;
/* int usage;
/* X509 *cert;
/* int depth;
/*
/* void tls_dane_set_callback(ssl_ctx, TLScontext)
/* SSL_CTX *ssl_ctx;
/* TLS_SESS_STATE *TLScontext;
/*
/* TLS_DANE *tls_dane_resolve(port, proto, hostrr, forcetlsa)
/* unsigned port;
/* const char *proto;
/* DNS_RR *hostrr;
/* int forcetlsa;
/*
/* int tls_dane_unusable(dane)
/* const TLS_DANE *dane;
/*
/* int tls_dane_notfound(dane)
/* const TLS_DANE *dane;
/* DESCRIPTION
/* tls_dane_avail() returns true if the features required to support DANE
/* are present in OpenSSL's libcrypto and in libresolv. Since OpenSSL's
/* libcrypto is not initialized until we call tls_client_init(), calls
/* to tls_dane_avail() must be deferred until this initialization is
/* completed successufully.
/*
/* tls_dane_flush() flushes all entries from the cache, and deletes
/* the cache.
/*
/* tls_dane_verbose() turns on verbose logging of TLSA record lookups.
/*
/* tls_dane_alloc() returns a pointer to a newly allocated TLS_DANE
/* structure with null ta and ee digest sublists.
/*
/* tls_dane_free() frees the structure allocated by tls_dane_alloc().
/*
/* tls_dane_add_ee_digests() splits "digest" using the characters in
/* "delim" as delimiters and stores the results on the EE match list
/* to match either a certificate or a public key. This is an incremental
/* interface, that builds a TLS_DANE structure outside the cache by
/* manually adding entries.
/*
/* tls_dane_load_trustfile() imports trust-anchor certificates and
/* public keys from a file (rather than DNS TLSA records).
/*
/* tls_dane_match() matches the full and/or public key digest of
/* "cert" against each candidate digest in TLScontext->dane. If usage
/* is TLS_DANE_EE, the match is against end-entity digests, otherwise
/* it is against trust-anchor digests. Returns true if a match is found,
/* false otherwise.
/*
/* tls_dane_set_callback() wraps the SSL certificate verification logic
/* in a function that modifies the input trust chain and trusted
/* certificate store to map DANE TA validation onto the existing PKI
/* verification model. When TLScontext is NULL the callback is
/* cleared, otherwise it is set. This callback should only be set
/* when out-of-band trust-anchors (via DNSSEC DANE TLSA records or
/* per-destination local configuration) are provided. Such trust
/* anchors always override the legacy public CA PKI. Otherwise, the
/* callback MUST be cleared.
/*
/* tls_dane_resolve() maps a (port, protocol, hostrr) tuple to a
/* corresponding TLS_DANE policy structure found in the DNS. The port
/* argument is in network byte order. A null pointer is returned when
/* the DNS query for the TLSA record tempfailed. In all other cases the
/* return value is a pointer to the corresponding TLS_DANE structure.
/* The caller must free the structure via tls_dane_free().
/*
/* tls_dane_unusable() checks whether a cached TLS_DANE record is
/* the result of a validated RRset, with no usable elements. In
/* this case, TLS is mandatory, but certificate verification is
/* not DANE-based.
/*
/* tls_dane_notfound() checks whether a cached TLS_DANE record is
/* the result of a validated DNS lookup returning NODATA. In
/* this case, TLS is not required by RFC, though users may elect
/* a mandatory TLS fallback policy.
/*
/* Arguments:
/* .IP dane
/* Pointer to a TLS_DANE structure that lists the valid trust-anchor
/* and end-entity full-certificate and/or public-key digests.
/* .IP port
/* The TCP port in network byte order.
/* .IP proto
/* Almost certainly "tcp".
/* .IP hostrr
/* DNS_RR pointer to TLSA base domain data.
/* .IP forcetlsa
/* When true, TLSA lookups are performed even when the qname and rname
/* are insecure. This is only useful in the unlikely case that DLV is
/* used to secure the TLSA RRset in an otherwise insecure zone.
/* .IP TLScontext
/* Client context with TA/EE matching data and related state.
/* .IP usage
/* Trust anchor (TLS_DANE_TA) or end-entity (TLS_DANE_EE) digests?
/* .IP cert
/* Certificate from peer trust chain (CA or leaf server).
/* .IP depth
/* The certificate depth for logging.
/* .IP ssl_ctx
/* The global SSL_CTX structure used to initialize child SSL
/* conenctions.
/* .IP mdalg
/* Name of a message digest algorithm suitable for computing secure
/* (1st pre-image resistant) message digests of certificates. For now,
/* md5, sha1, or member of SHA-2 family if supported by OpenSSL.
/* .IP digest
/* The digest (or list of digests concatenated with characters from
/* "delim") to be added to the TLS_DANE record.
/* .IP delim
/* The set of delimiter characters used above.
/* LICENSE
/* .ad
/* .fi
/* This software is free. You can do with it whatever you want.
/* The original author kindly requests that you acknowledge
/* the use of his software.
/* AUTHOR(S)
/* Wietse Venema
/* IBM T.J. Watson Research
/* P.O. Box 704
/* Yorktown Heights, NY 10598, USA
/*
/* Viktor Dukhovni
/*--*/
/* System library. */
#include <sys_defs.h>
#include <ctype.h>
#ifdef STRCASECMP_IN_STRINGS_H
#include <strings.h>
#endif
#ifdef USE_TLS
#include <string.h>
/* Utility library. */
#include <msg.h>
#include <mymalloc.h>
#include <stringops.h>
#include <vstring.h>
#include <events.h> /* event_time() */
#include <timecmp.h>
#include <ctable.h>
#include <hex_code.h>
#include <safe_ultostr.h>
#include <split_at.h>
#include <name_code.h>
#define STR(x) vstring_str(x)
/* Global library */
#include <mail_params.h>
/* DNS library. */
#include <dns.h>
/* TLS library. */
#define TLS_INTERNAL
#include <tls.h>
/* Application-specific. */
#undef TRUST_ANCHOR_SUPPORT
#undef DANE_TLSA_SUPPORT
#undef WRAP_SIGNED
#if OPENSSL_VERSION_NUMBER >= 0x1000000fL && \
(defined(X509_V_FLAG_PARTIAL_CHAIN) || !defined(OPENSSL_NO_ECDH))
#define TRUST_ANCHOR_SUPPORT
#ifndef X509_V_FLAG_PARTIAL_CHAIN
#define WRAP_SIGNED
#endif
#if defined(TLSEXT_MAXLEN_host_name) && RES_USE_DNSSEC && RES_USE_EDNS0
#define DANE_TLSA_SUPPORT
#endif
#endif /* OPENSSL_VERSION_NUMBER ... */
#ifdef TRUST_ANCHOR_SUPPORT
static int ta_support = 1;
#else
static int ta_support = 0;
#endif
#ifdef WRAP_SIGNED
static int wrap_signed = 1;
#else
static int wrap_signed = 0;
#endif
#ifdef DANE_TLSA_SUPPORT
static int dane_tlsa_support = 1;
#else
static int dane_tlsa_support = 0;
#endif
static EVP_PKEY *signkey;
static const EVP_MD *signmd;
static const char *signalg;
static ASN1_OBJECT *serverAuth;
/*
* https://www.iana.org/assignments/dane-parameters/dane-parameters.xhtml
*/
typedef struct {
const char *mdalg;
uint8_t dane_id;
} iana_digest;
static iana_digest iana_table[] = {
{"", DNS_TLSA_MATCHING_TYPE_NO_HASH_USED},
{"sha256", DNS_TLSA_MATCHING_TYPE_SHA256},
{"sha512", DNS_TLSA_MATCHING_TYPE_SHA512},
{0, 0}
};
typedef struct dane_digest {
struct dane_digest *next; /* linkage */
const char *mdalg; /* OpenSSL name */
const EVP_MD *md; /* OpenSSL EVP handle */
int len; /* digest octet length */
int pref; /* tls_dane_digests index or -1 */
uint8_t dane_id; /* IANA id */
} dane_digest;
#define MAXDIGESTS 256 /* RFC limit */
static dane_digest *digest_list;
/*
* This is not intended to be a long-term cache of pre-parsed TLSA data,
* rather we primarily want to avoid fetching and parsing the TLSA records
* for a single multi-homed MX host more than once per delivery. Therefore,
* we keep the table reasonably small.
*/
#define CACHE_SIZE 20
static CTABLE *dane_cache;
static int dane_initialized;
static int dane_verbose;
/* tls_dane_verbose - enable/disable verbose logging */
void tls_dane_verbose(int on)
{
dane_verbose = on;
}
/* add_digest - validate and append digest to digest list */
static dane_digest *add_digest(char *mdalg, int pref)
{
iana_digest *i;
dane_digest *d;
int dane_id = -1;
const char *dane_mdalg = mdalg;
char *value = split_at(mdalg, '=');
const EVP_MD *md = 0;
size_t mdlen = 0;
if (value && *value) {
unsigned long l;
char *endcp;
/*
* XXX: safe_strtoul() does not flag empty or white-space only input.
* Since we get idbuf by splitting white-space/comma delimited
* tokens, this is not a problem here. Fixed as of 210131209.
*/
l = safe_strtoul(value, &endcp, 10);
if ((l == 0 && (errno == EINVAL || endcp == value))
|| l >= MAXDIGESTS
|| *endcp) {
msg_warn("Invalid matching type number in %s: %s=%s",
VAR_TLS_DANE_DIGESTS, mdalg, value);
return (0);
}
dane_id = l;
}
/*
* Check for known IANA conflicts
*/
for (i = iana_table; i->mdalg; ++i) {
if (*mdalg && strcasecmp(i->mdalg, mdalg) == 0) {
if (dane_id >= 0 && i->dane_id != dane_id) {
msg_warn("Non-standard value in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
dane_id = i->dane_id;
} else if (i->dane_id == dane_id) {
if (*mdalg) {
msg_warn("Non-standard algorithm in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
dane_mdalg = i->mdalg;
}
}
/*
* Check for unknown implicit digest or value
*/
if (dane_id < 0 || (dane_id > 0 && !*dane_mdalg)) {
msg_warn("Unknown incompletely specified element in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return 0;
}
/*
* Check for duplicate entries
*/
for (d = digest_list; d; d = d->next) {
if (strcasecmp(d->mdalg, dane_mdalg) == 0
|| d->dane_id == dane_id) {
msg_warn("Duplicate element in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
}
if (*dane_mdalg
&& ((md = EVP_get_digestbyname(dane_mdalg)) == 0
|| (mdlen = EVP_MD_size(md)) <= 0
|| mdlen > EVP_MAX_MD_SIZE)) {
msg_warn("Unimplemented digest algorithm in %s: %s%s%s",
VAR_TLS_DANE_DIGESTS, mdalg,
value ? "=" : "", value ? value : "");
return (0);
}
d = (dane_digest *) mymalloc(sizeof(*d));
d->next = digest_list;
d->mdalg = mystrdup(dane_mdalg);
d->md = md;
d->len = mdlen;
d->pref = pref;
d->dane_id = dane_id;
return (digest_list = d);
}
/* digest_byid - locate digest_table entry for given IANA id */
static dane_digest *digest_byid(uint8_t dane_id)
{
dane_digest *d;
for (d = digest_list; d; d = d->next)
if (d->dane_id == dane_id)
return (d);
return (0);
}
/* digest_pref_byid - digest preference by IANA id */
static int digest_pref_byid(uint8_t dane_id)
{
dane_digest *d = digest_byid(dane_id);
return (d ? (d->pref) : (MAXDIGESTS + dane_id));
}
/* gencakey - generate interal DANE root CA key */
static EVP_PKEY *gencakey(void)
{
EVP_PKEY *key = 0;
#ifdef WRAP_SIGNED
EC_KEY *eckey;
EC_GROUP *group = 0;
ERR_clear_error();
if ((eckey = EC_KEY_new()) != 0
&& (group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)) != 0
&& (EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE),
EC_KEY_set_group(eckey, group))
&& EC_KEY_generate_key(eckey)
&& (key = EVP_PKEY_new()) != 0
&& !EVP_PKEY_set1_EC_KEY(key, eckey)) {
EVP_PKEY_free(key);
key = 0;
}
if (group)
EC_GROUP_free(group);
if (eckey)
EC_KEY_free(eckey);
#endif /* WRAP_SIGNED */
return (key);
}
/* dane_init - initialize DANE parameters */
static void dane_init(void)
{
int digest_pref = 0;
char *cp;
char *save;
char *tok;
static char fullmtype[] = "=0";
dane_digest *d;
/*
* Add the full matching type at highest preference and then the users
* configured list.
*
* The most preferred digest will be used for cert signing and hashing full
* values for comparison.
*/
if (add_digest(fullmtype, 0)) {
save = cp = mystrdup(var_tls_dane_digests);
while ((tok = mystrtok(&cp, CHARS_COMMA_SP)) != 0) {
if ((d = add_digest(tok, ++digest_pref)) == 0) {
signalg = 0;
signmd = 0;
break;
}
if (digest_pref == 1) {
signalg = d->mdalg;
signmd = d->md;
}
}
myfree(save);
}
/* Don't report old news */
ERR_clear_error();
/*
* DANE TLSA support requires trust-anchor support plus working DANE
* digests.
*/
if (!ta_support
|| (wrap_signed && (signkey = gencakey()) == 0)
|| (serverAuth = OBJ_nid2obj(NID_server_auth)) == 0) {
msg_warn("cannot generate TA certificates, "
"no trust-anchor or DANE support");
tls_print_errors();
dane_tlsa_support = ta_support = 0;
} else if (signmd == 0) {
msg_warn("digest algorithm initializaton failed, no DANE support");
tls_print_errors();
dane_tlsa_support = 0;
}
dane_initialized = 1;
}
/* tls_dane_avail - check for availability of dane required digests */
int tls_dane_avail(void)
{
if (!dane_initialized)
dane_init();
return (dane_tlsa_support);
}
/* tls_dane_flush - flush the cache */
void tls_dane_flush(void)
{
if (dane_cache)
ctable_free(dane_cache);
dane_cache = 0;
}
/* tls_dane_alloc - allocate a TLS_DANE structure */
TLS_DANE *tls_dane_alloc(void)
{
TLS_DANE *dane = (TLS_DANE *) mymalloc(sizeof(*dane));
dane->ta = 0;
dane->ee = 0;
dane->certs = 0;
dane->pkeys = 0;
dane->base_domain = 0;
dane->flags = 0;
dane->expires = 0;
dane->refs = 1;
return (dane);
}
static void ta_cert_insert(TLS_DANE *d, X509 *x)
{
TLS_CERTS *new = (TLS_CERTS *) mymalloc(sizeof(*new));
X509_up_ref(x);
new->cert = x;
new->next = d->certs;
d->certs = new;
}
static void free_ta_certs(TLS_DANE *d)
{
TLS_CERTS *head;
TLS_CERTS *next;
for (head = d->certs; head; head = next) {
next = head->next;
X509_free(head->cert);
myfree((void *) head);
}
}
static void ta_pkey_insert(TLS_DANE *d, EVP_PKEY *k)
{
TLS_PKEYS *new = (TLS_PKEYS *) mymalloc(sizeof(*new));
EVP_PKEY_up_ref(k);
new->pkey = k;
new->next = d->pkeys;
d->pkeys = new;
}
static void free_ta_pkeys(TLS_DANE *d)
{
TLS_PKEYS *head;
TLS_PKEYS *next;
for (head = d->pkeys; head; head = next) {
next = head->next;
EVP_PKEY_free(head->pkey);
myfree((void *) head);
}
}
static void tlsa_free(TLS_TLSA *tlsa)
{
myfree(tlsa->mdalg);
if (tlsa->certs)
argv_free(tlsa->certs);
if (tlsa->pkeys)
argv_free(tlsa->pkeys);
myfree((void *) tlsa);
}
/* tls_dane_free - free a TLS_DANE structure */
void tls_dane_free(TLS_DANE *dane)
{
TLS_TLSA *tlsa;
TLS_TLSA *next;
if (--dane->refs > 0)
return;
/* De-allocate TA and EE lists */
for (tlsa = dane->ta; tlsa; tlsa = next) {
next = tlsa->next;
tlsa_free(tlsa);
}
for (tlsa = dane->ee; tlsa; tlsa = next) {
next = tlsa->next;
tlsa_free(tlsa);
}
/* De-allocate full trust-anchor certs and pkeys */
free_ta_certs(dane);
free_ta_pkeys(dane);
if (dane->base_domain)
myfree(dane->base_domain);
myfree((void *) dane);
}
/* dane_free - ctable style */
static void dane_free(void *dane, void *unused_context)
{
tls_dane_free((TLS_DANE *) dane);
}
/* dane_locate - list head address of TLSA sublist for given algorithm */
static TLS_TLSA **dane_locate(TLS_TLSA **tlsap, const char *mdalg)
{
TLS_TLSA *new;
/*
* Correct computation of the session cache serverid requires a TLSA
* digest list that is sorted by algorithm name. Below we maintain the
* sort order (by algorithm name canonicalized to lowercase).
*/
for (; *tlsap; tlsap = &(*tlsap)->next) {
int cmp = strcasecmp(mdalg, (*tlsap)->mdalg);
if (cmp == 0)
return (tlsap);
if (cmp < 0)
break;
}
new = (TLS_TLSA *) mymalloc(sizeof(*new));
new->mdalg = lowercase(mystrdup(mdalg));
new->certs = 0;
new->pkeys = 0;
new->next = *tlsap;
*tlsap = new;
return (tlsap);
}
/* tls_dane_add_ee_digests - split and append digests */
void tls_dane_add_ee_digests(TLS_DANE *dane, const char *mdalg,
const char *digest, const char *delim)
{
TLS_TLSA **tlsap = dane_locate(&dane->ee, mdalg);
TLS_TLSA *tlsa = *tlsap;
/* Delimited append, may append nothing */
if (tlsa->pkeys == 0)
tlsa->pkeys = argv_split(digest, delim);
else
argv_split_append(tlsa->pkeys, digest, delim);
/* Remove empty elements from the list */
if (tlsa->pkeys->argc == 0) {
argv_free(tlsa->pkeys);
tlsa->pkeys = 0;
if (tlsa->certs == 0) {
*tlsap = tlsa->next;
tlsa_free(tlsa);
}
return;
}
/*
* At the "fingerprint" security level certificate digests and public key
* digests are interchangeable. Each leaf certificate is matched via
* either the public key digest or full certificate digest. The DER
* encoding of a certificate is not a valid public key, and conversely,
* the DER encoding of a public key is not a valid certificate. An
* attacker would need a 2nd-preimage that is feasible across types
* (given cert digest == some pkey digest) and yet presumably difficult
* within a type (e.g. given cert digest == some other cert digest). No
* such attacks are known at this time, and it is expected that if any
* are found they would work within as well as across the cert/pkey data
* types.
*/
if (tlsa->certs == 0)
tlsa->certs = argv_split(digest, delim);
else
argv_split_append(tlsa->certs, digest, delim);
}
/* dane_add - add a digest entry */
static void dane_add(TLS_DANE *dane, int certusage, int selector,
const char *mdalg, char *digest)
{
TLS_TLSA **tlsap;
TLS_TLSA *tlsa;
ARGV **argvp;
switch (certusage) {
case DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION:
certusage = TLS_DANE_TA;
break;
case DNS_TLSA_USAGE_DOMAIN_ISSUED_CERTIFICATE:
certusage = TLS_DANE_EE; /* Collapse 1/3 -> 3 */
break;
default:
msg_panic("Unsupported DANE certificate usage: %d", certusage);
}
switch (selector) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
selector = TLS_DANE_CERT;
break;
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
selector = TLS_DANE_PKEY;
break;
default:
msg_panic("Unsupported DANE selector: %d", selector);
}
tlsap = (certusage == TLS_DANE_EE) ? &dane->ee : &dane->ta;
tlsa = *(tlsap = dane_locate(tlsap, mdalg));
argvp = (selector == TLS_DANE_PKEY) ? &tlsa->pkeys : &tlsa->certs;
if (*argvp == 0)
*argvp = argv_alloc(1);
argv_add(*argvp, digest, ARGV_END);
}
#define FILTER_CTX_AGILITY_OK (1<<0)
#define FILTER_CTX_APPLY_AGILITY (1<<1)
#define FILTER_CTX_PARSE_DATA (1<<2)
#define FILTER_RR_DROP 0
#define FILTER_RR_KEEP 1
typedef struct filter_ctx {
TLS_DANE *dane; /* Parsed result */
int count; /* Digest mtype count */
int target; /* Digest mtype target count */
int flags; /* Action/result bitmask */
} filter_ctx;
typedef int (*tlsa_filter) (DNS_RR *, filter_ctx *);
/* tlsa_apply - apply filter to each rr in turn */
static DNS_RR *tlsa_apply(DNS_RR *rr, tlsa_filter filter, filter_ctx *ctx)
{
DNS_RR *head = 0; /* First retained RR */
DNS_RR *tail = 0; /* Last retained RR */
DNS_RR *next;
/*
* XXX Code that modifies or destroys DNS_RR lists or entries belongs in
* the DNS library, not here.
*/
for ( /* nop */ ; rr; rr = next) {
next = rr->next;
if (filter(rr, ctx) == FILTER_RR_KEEP) {
tail = rr;
if (!head)
head = rr;
} else {
if (tail)
tail->next = rr->next;
rr->next = 0;
dns_rr_free(rr);
}
}
return (head);
}
/* usmdelta - packed usage/selector/mtype bits changing in next record */
static unsigned int usmdelta(uint8_t u, uint8_t s, uint8_t m, DNS_RR *next)
{
uint8_t *ip = (next && next->data_len >= 3) ? (uint8_t *) next->data : 0;
uint8_t nu = ip ? *ip++ : ~u;
uint8_t ns = ip ? *ip++ : ~s;
uint8_t nm = ip ? *ip++ : ~m;
return (((u ^ nu) << 16) | ((s ^ ns) << 8) | (m ^ nm));
}
/* tlsa_rr_cmp - qsort TLSA rrs in case shuffled by name server */
static int tlsa_rr_cmp(DNS_RR *a, DNS_RR *b)
{
int cmp;
/*
* Sort in ascending order, by usage, selector, matching type preference
* and payload. The usage, selector and matching type are the first
* three unsigned octets of the RR data.
*/
if (a->data_len > 2 && b->data_len > 2) {
uint8_t *ai = (uint8_t *) a->data;
uint8_t *bi = (uint8_t *) b->data;
#define signedcmp(x, y) (((int)(x)) - ((int)(y)))
if ((cmp = signedcmp(ai[0], bi[0])) != 0
|| (cmp = signedcmp(ai[1], bi[1])) != 0
|| (cmp = digest_pref_byid(ai[2]) -
digest_pref_byid(bi[2])) != 0)
return (cmp);
}
if ((cmp = a->data_len - b->data_len) != 0)
return (cmp);
return (memcmp(a->data, b->data, a->data_len));
}
/* parse_tlsa_rr - parse a validated TLSA RRset */
static int parse_tlsa_rr(DNS_RR *rr, filter_ctx *ctx)
{
uint8_t *ip;
uint8_t usage;
uint8_t selector;
uint8_t mtype;
ssize_t dlen;
D2I_const unsigned char *data;
D2I_const unsigned char *p;
int iscname = strcasecmp(rr->rname, rr->qname);
const char *q = (iscname) ? (rr)->qname : "";
const char *a = (iscname) ? " -> " : "";
const char *r = rr->rname;
unsigned int change;
if (rr->type != T_TLSA)
msg_panic("unexpected non-TLSA RR type %u for %s%s%s", rr->type,
q, a, r);
/* Drop truncated records */
if ((dlen = rr->data_len - 3) < 0) {
msg_warn("truncated length %u RR: %s%s%s IN TLSA ...",
(unsigned) rr->data_len, q, a, r);
ctx->flags &= ~FILTER_CTX_AGILITY_OK;
return (FILTER_RR_DROP);
}
ip = (uint8_t *) rr->data;
usage = *ip++;
selector = *ip++;
mtype = *ip++;
change = usmdelta(usage, selector, mtype, rr->next);
p = data = (D2I_const unsigned char *) ip;
/*
* Handle digest agility for non-zero matching types.
*/
if (mtype) {
if (ctx->count && (ctx->flags & FILTER_CTX_APPLY_AGILITY)) {
if (change & 0xffff00) /* New usage/selector, */
ctx->count = 0; /* disable drop */
return (FILTER_RR_DROP);
}
}
/*-
* Drop unsupported usages.
* Note: NO SUPPORT for usages 0/1 which do not apply to SMTP.
*/
switch (usage) {
case DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION:
case DNS_TLSA_USAGE_DOMAIN_ISSUED_CERTIFICATE:
break;
default:
msg_warn("unsupported certificate usage %u in RR: "
"%s%s%s IN TLSA %u ...", usage,
q, a, r, usage);
return (FILTER_RR_DROP);
}
/*
* Drop unsupported selectors
*/
switch (selector) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
break;
default:
msg_warn("unsupported selector %u in RR: "
"%s%s%s IN TLSA %u %u ...", selector,
q, a, r, usage, selector);
return (FILTER_RR_DROP);
}
if (mtype) {
dane_digest *d = digest_byid(mtype);
if (d == 0) {
msg_warn("unsupported matching type %u in RR: "
"%s%s%s IN TLSA %u %u %u ...", mtype,
q, a, r, usage, selector, mtype);
return (FILTER_RR_DROP);
}
if (dlen != d->len) {
msg_warn("malformed %s digest, length %lu, in RR: "
"%s%s%s IN TLSA %u %u %u ...",
d->mdalg, (unsigned long) dlen,
q, a, r, usage, selector, mtype);
ctx->flags &= ~FILTER_CTX_AGILITY_OK;
return (FILTER_RR_DROP);
}
/* New digest mtype next? Prepare to drop following RRs */
if (change && (change & 0xffff00) == 0
&& (ctx->flags & FILTER_CTX_APPLY_AGILITY))
++ctx->count;
if (ctx->flags & FILTER_CTX_PARSE_DATA) {
char *digest = tls_digest_encode(data, dlen);
dane_add(ctx->dane, usage, selector, d->mdalg, digest);
if (msg_verbose || dane_verbose)
msg_info("using DANE RR: %s%s%s IN TLSA %u %u %u %s",
q, a, r, usage, selector, mtype, digest);
myfree(digest);
}
} else {
X509 *x = 0; /* OpenSSL re-uses *x if x!=0 */
EVP_PKEY *k = 0; /* OpenSSL re-uses *k if k!=0 */
/* Validate the cert or public key via d2i_mumble() */
switch (selector) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
if (!d2i_X509(&x, &p, dlen) || dlen != p - data) {
msg_warn("malformed %s in RR: "
"%s%s%s IN TLSA %u %u %u ...", "certificate",
q, a, r, usage, selector, mtype);
if (x)
X509_free(x);
return (FILTER_RR_DROP);
}
/* Also unusable if public key is malformed or unsupported */
k = X509_get_pubkey(x);
EVP_PKEY_free(k);
if (k == 0) {
msg_warn("malformed %s in RR: %s%s%s IN TLSA %u %u %u ...",
"or unsupported certificate public key",
q, a, r, usage, selector, mtype);
X509_free(x);
return (FILTER_RR_DROP);
}
/*
* When a full trust-anchor certificate is published via DNS, we
* may need to use it to validate the server trust chain. Store
* it away for later use.
*/
if (usage == DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION
&& (ctx->flags & FILTER_CTX_PARSE_DATA))
ta_cert_insert(ctx->dane, x);
X509_free(x);
break;
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data) {
msg_warn("malformed %s in RR: %s%s%s IN TLSA %u %u %u ...",
"public key", q, a, r, usage, selector, mtype);
if (k)
EVP_PKEY_free(k);
return (FILTER_RR_DROP);
}
/*
* When a full trust-anchor public key is published via DNS, we
* may need to use it to validate the server trust chain. Store
* it away for later use.
*/
if (usage == DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION
&& (ctx->flags & FILTER_CTX_PARSE_DATA))
ta_pkey_insert(ctx->dane, k);
EVP_PKEY_free(k);
break;
}
/*
* The cert or key was valid, just digest the raw object, and encode
* the digest value.
*/
if (ctx->flags & FILTER_CTX_PARSE_DATA) {
char *digest = tls_data_fprint((char *) data, dlen, signalg);
dane_add(ctx->dane, usage, selector, signalg, digest);
if (msg_verbose || dane_verbose)
msg_info("using DANE RR: %s%s%s IN TLSA %u %u %u <%s>; "
"%s digest %s", q, a, r, usage, selector, mtype,
(selector == DNS_TLSA_SELECTOR_FULL_CERTIFICATE) ?
"certificate" : "public key", signalg, digest);
myfree(digest);
}
}
return (FILTER_RR_KEEP);
}
/* process_rrs - filter and parse the TLSA RRset */
static DNS_RR *process_rrs(TLS_DANE *dane, DNS_RR *rrset)
{
filter_ctx ctx;
ctx.dane = dane;
ctx.count = ctx.target = 0;
ctx.flags = FILTER_CTX_APPLY_AGILITY | FILTER_CTX_PARSE_DATA;
rrset = tlsa_apply(rrset, parse_tlsa_rr, &ctx);
if (dane->ta == 0 && dane->ee == 0)
dane->flags |= TLS_DANE_FLAG_EMPTY;
return (rrset);
}
/* dane_lookup - TLSA record lookup, ctable style */
static void *dane_lookup(const char *tlsa_fqdn, void *unused_ctx)
{
static VSTRING *why = 0;
int ret;
DNS_RR *rrs = 0;
TLS_DANE *dane;
if (why == 0)
why = vstring_alloc(10);
dane = tls_dane_alloc();
ret = dns_lookup(tlsa_fqdn, T_TLSA, RES_USE_DNSSEC, &rrs, 0, why);
switch (ret) {
case DNS_OK:
if (TLS_DANE_CACHE_TTL_MIN && rrs->ttl < TLS_DANE_CACHE_TTL_MIN)
rrs->ttl = TLS_DANE_CACHE_TTL_MIN;
if (TLS_DANE_CACHE_TTL_MAX && rrs->ttl > TLS_DANE_CACHE_TTL_MAX)
rrs->ttl = TLS_DANE_CACHE_TTL_MAX;
/* One more second to account for discrete time */
dane->expires = 1 + event_time() + rrs->ttl;
if (rrs->dnssec_valid) {
/*
* Sort for deterministic digest in session cache lookup key. In
* addition we must arrange for more preferred matching types
* (full value or digest) to precede less preferred ones for the
* same usage and selector.
*/
rrs = dns_rr_sort(rrs, tlsa_rr_cmp);
rrs = process_rrs(dane, rrs);
} else
dane->flags |= TLS_DANE_FLAG_NORRS;
if (rrs)
dns_rr_free(rrs);
break;
case DNS_NOTFOUND:
dane->flags |= TLS_DANE_FLAG_NORRS;
dane->expires = 1 + event_time() + TLS_DANE_CACHE_TTL_MIN;
break;
default:
msg_warn("DANE TLSA lookup problem: %s", STR(why));
dane->flags |= TLS_DANE_FLAG_ERROR;
break;
}
return (void *) dane;
}
/* resolve_host - resolve TLSA RRs for hostname (rname or qname) */
static TLS_DANE *resolve_host(const char *host, const char *proto,
unsigned port)
{
static VSTRING *query_domain;
TLS_DANE *dane;
if (query_domain == 0)
query_domain = vstring_alloc(64);
vstring_sprintf(query_domain, "_%u._%s.%s", ntohs(port), proto, host);
dane = (TLS_DANE *) ctable_locate(dane_cache, STR(query_domain));
if (timecmp(event_time(), dane->expires) > 0)
dane = (TLS_DANE *) ctable_refresh(dane_cache, STR(query_domain));
if (dane->base_domain == 0)
dane->base_domain = mystrdup(host);
/* Increment ref-count of cached entry */
++dane->refs;
return (dane);
}
/* qname_secure - Lookup qname DNSSEC status */
static int qname_secure(const char *qname)
{
static VSTRING *why;
int ret = 0;
DNS_RR *rrs;
if (!why)
why = vstring_alloc(10);
/*
* We assume that qname is already an fqdn, and does not need any
* suffixes from RES_DEFNAME or RES_DNSRCH. This is typically the name
* of an MX host, and must be a complete DNS name. DANE initialization
* code in the SMTP client is responsible for checking that the default
* resolver flags do not include RES_DEFNAME and RES_DNSRCH.
*/
ret = dns_lookup(qname, T_CNAME, RES_USE_DNSSEC, &rrs, 0, why);
if (ret == DNS_OK) {
ret = rrs->dnssec_valid;
dns_rr_free(rrs);
return (ret);
}
if (ret == DNS_NOTFOUND)
vstring_sprintf(why, "no longer a CNAME");
msg_warn("DNSSEC status lookup error for %s: %s", qname, STR(why));
return (-1);
}
/* tls_dane_resolve - cached map: (name, proto, port) -> TLS_DANE */
TLS_DANE *tls_dane_resolve(unsigned port, const char *proto, DNS_RR *hostrr,
int forcetlsa)
{
TLS_DANE *dane = 0;
int iscname = strcasecmp(hostrr->rname, hostrr->qname);
int isvalid = 1;
if (!tls_dane_avail())
return (0); /* Error */
/*
* By default suppress TLSA lookups for hosts in non-DNSSEC zones. If
* the host zone is not DNSSEC validated, the TLSA qname sub-domain is
* safely assumed to not be in a DNSSEC Look-aside Validation child zone.
*/
if (!forcetlsa && !hostrr->dnssec_valid) {
isvalid = iscname ? qname_secure(hostrr->qname) : 0;
if (isvalid < 0)
return (0); /* Error */
}
if (!isvalid) {
dane = tls_dane_alloc();
dane->flags = TLS_DANE_FLAG_NORRS;
} else {
if (!dane_cache)
dane_cache = ctable_create(CACHE_SIZE, dane_lookup, dane_free, 0);
/*
* Try the rname first if secure, if nothing there, try the qname if
* different. Note, lookup errors are distinct from success with
* nothing found. If the rname lookup fails we don't try the qname.
*/
if (hostrr->dnssec_valid) {
dane = resolve_host(hostrr->rname, proto, port);
if (tls_dane_notfound(dane) && iscname) {
tls_dane_free(dane);
dane = 0;
}
}
if (!dane)
dane = resolve_host(hostrr->qname, proto, port);
if (dane->flags & TLS_DANE_FLAG_ERROR) {
/* We don't return this object. */
tls_dane_free(dane);
dane = 0;
}
}
return (dane);
}
/* tls_dane_load_trustfile - load trust anchor certs or keys from file */
int tls_dane_load_trustfile(TLS_DANE *dane, const char *tafile)
{
#ifdef TRUST_ANCHOR_SUPPORT
BIO *bp;
char *name = 0;
char *header = 0;
unsigned char *data = 0;
long len;
int tacount;
char *errtype = 0; /* if error: cert or pkey? */
const char *mdalg;
/* nop */
if (tafile == 0 || *tafile == 0)
return (1);
if (!dane_initialized)
dane_init();
if (!ta_support) {
msg_warn("trust-anchor files not supported");
return (0);
}
mdalg = signalg ? signalg : "sha1";
/*
* On each call, PEM_read() wraps a stdio file in a BIO_NOCLOSE bio,
* calls PEM_read_bio() and then frees the bio. It is just as easy to
* open a BIO as a stdio file, so we use BIOs and call PEM_read_bio()
* directly.
*/
if ((bp = BIO_new_file(tafile, "r")) == NULL) {
msg_warn("error opening trust anchor file: %s: %m", tafile);
return (0);
}
/* Don't report old news */
ERR_clear_error();
for (tacount = 0;
errtype == 0 && PEM_read_bio(bp, &name, &header, &data, &len);
++tacount) {
D2I_const unsigned char *p = data;
int usage = DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION;
int selector;
char *digest;
if (strcmp(name, PEM_STRING_X509) == 0
|| strcmp(name, PEM_STRING_X509_OLD) == 0) {
X509 *cert = d2i_X509(0, &p, len);
if (cert && (p - data) == len) {
selector = DNS_TLSA_SELECTOR_FULL_CERTIFICATE;
digest = tls_data_fprint((char *) data, len, mdalg);
dane_add(dane, usage, selector, mdalg, digest);
myfree(digest);
ta_cert_insert(dane, cert);
} else
errtype = "certificate";
if (cert)
X509_free(cert);
} else if (strcmp(name, PEM_STRING_PUBLIC) == 0) {
EVP_PKEY *pkey = d2i_PUBKEY(0, &p, len);
if (pkey && (p - data) == len) {
selector = DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO;
digest = tls_data_fprint((char *) data, len, mdalg);
dane_add(dane, usage, selector, mdalg, digest);
myfree(digest);
ta_pkey_insert(dane, pkey);
} else
errtype = "public key";
if (pkey)
EVP_PKEY_free(pkey);
}
/*
* If any of these were null, PEM_read() would have failed.
*/
OPENSSL_free(name);
OPENSSL_free(header);
OPENSSL_free(data);
}
BIO_free(bp);
if (errtype) {
tls_print_errors();
msg_warn("error reading: %s: malformed trust-anchor %s",
tafile, errtype);
return (0);
}
if (ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) {
/* Reached end of PEM file */
ERR_clear_error();
return (tacount > 0);
}
/* Some other PEM read error */
tls_print_errors();
#else
msg_warn("Trust anchor files not supported");
#endif
return (0);
}
/* tls_dane_match - match cert against given list of TA or EE digests */
int tls_dane_match(TLS_SESS_STATE *TLScontext, int usage,
X509 *cert, int depth)
{
const TLS_DANE *dane = TLScontext->dane;
TLS_TLSA *tlsa = (usage == TLS_DANE_EE) ? dane->ee : dane->ta;
const char *namaddr = TLScontext->namaddr;
const char *ustr = (usage == TLS_DANE_EE) ? "end entity" : "trust anchor";
int matched;
for (matched = 0; tlsa && !matched; tlsa = tlsa->next) {
char **dgst;
/*
* Note, set_trust() needs to know whether the match was for a pkey
* digest or a certificate digest. We return MATCHED_PKEY or
* MATCHED_CERT accordingly.
*/
#define MATCHED_CERT 1
#define MATCHED_PKEY 2
if (tlsa->pkeys) {
char *pkey_dgst = tls_pkey_fprint(cert, tlsa->mdalg);
for (dgst = tlsa->pkeys->argv; !matched && *dgst; ++dgst)
if (strcasecmp(pkey_dgst, *dgst) == 0)
matched = MATCHED_PKEY;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH)
&& matched)
msg_info("%s: depth=%d matched %s public-key %s digest=%s",
namaddr, depth, ustr, tlsa->mdalg, pkey_dgst);
myfree(pkey_dgst);
}
if (tlsa->certs != 0 && !matched) {
char *cert_dgst = tls_cert_fprint(cert, tlsa->mdalg);
for (dgst = tlsa->certs->argv; !matched && *dgst; ++dgst)
if (strcasecmp(cert_dgst, *dgst) == 0)
matched = MATCHED_CERT;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH)
&& matched)
msg_info("%s: depth=%d matched %s certificate %s digest %s",
namaddr, depth, ustr, tlsa->mdalg, cert_dgst);
myfree(cert_dgst);
}
}
return (matched);
}
/* push_ext - push extension onto certificate's stack, else free it */
static int push_ext(X509 *cert, X509_EXTENSION *ext)
{
if (ext) {
if (X509_add_ext(cert, ext, -1))
return 1;
X509_EXTENSION_free(ext);
}
return 0;
}
/* add_ext - add simple extension (no config section references) */
static int add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
{
X509V3_CTX v3ctx;
X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
}
/* set_serial - set serial number to match akid or use subject's plus 1 */
static int set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
{
int ret = 0;
BIGNUM *bn;
if (akid && akid->serial)
return (X509_set_serialNumber(cert, akid->serial));
/*
* Add one to subject's serial to avoid collisions between TA serial and
* serial of signing root.
*/
if ((bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
&& BN_add_word(bn, 1)
&& BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
ret = 1;
if (bn)
BN_free(bn);
return (ret);
}
/* add_akid - add authority key identifier */
static int add_akid(X509 *cert, AUTHORITY_KEYID *akid)
{
ASN1_OCTET_STRING *id;
unsigned char c = 0;
int nid = NID_authority_key_identifier;
int ret = 0;
/*
* 0 will never be our subject keyid from a SHA-1 hash, but it could be
* our subject keyid if forced from child's akid. If so, set our
* authority keyid to 1. This way we are never self-signed, and thus
* exempt from any potential (off by default for now in OpenSSL)
* self-signature checks!
*/
id = ((akid && akid->keyid) ? akid->keyid : 0);
if (id && ASN1_STRING_length(id) == 1 && *ASN1_STRING_get0_data(id) == c)
c = 1;
if ((akid = AUTHORITY_KEYID_new()) != 0
&& (akid->keyid = ASN1_OCTET_STRING_new()) != 0
&& ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
&& X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_DEFAULT) > 0)
ret = 1;
if (akid)
AUTHORITY_KEYID_free(akid);
return (ret);
}
/* add_skid - add subject key identifier to match child's akid */
static int add_skid(X509 *cert, AUTHORITY_KEYID *akid)
{
int nid = NID_subject_key_identifier;
if (!akid || !akid->keyid)
return (add_ext(0, cert, nid, "hash"));
else
return (X509_add1_ext_i2d(cert, nid, akid->keyid, 0,
X509V3_ADD_DEFAULT) > 0);
}
/* akid_issuer_name - get akid issuer directory name */
static X509_NAME *akid_issuer_name(AUTHORITY_KEYID *akid)
{
if (akid && akid->issuer) {
int i;
general_name_stack_t *gens = akid->issuer;
for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i) {
GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
if (gn->type == GEN_DIRNAME)
return (gn->d.dirn);
}
}
return (0);
}
/* set_issuer - set issuer DN to match akid if specified */
static int set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
{
X509_NAME *name = akid_issuer_name(akid);
/*
* If subject's akid specifies an authority key identifier issuer name, we
* must use that.
*/
if (name)
return (X509_set_issuer_name(cert, name));
return (X509_set_issuer_name(cert, X509_get_subject_name(cert)));
}
/* grow_chain - add certificate to trusted or untrusted chain */
static void grow_chain(TLS_SESS_STATE *TLScontext, int trusted, X509 *cert)
{
x509_stack_t **xs = trusted ? &TLScontext->trusted : &TLScontext->untrusted;
#define UNTRUSTED 0
#define TRUSTED 1
if (!*xs && (*xs = sk_X509_new_null()) == 0)
msg_fatal("out of memory");
if (cert) {
if (trusted && !X509_add1_trust_object(cert, serverAuth))
msg_fatal("out of memory");
X509_up_ref(cert);
if (!sk_X509_push(*xs, cert))
msg_fatal("out of memory");
}
}
/* wrap_key - wrap TA "key" as issuer of "subject" */
static void wrap_key(TLS_SESS_STATE *TLScontext, int depth,
EVP_PKEY *key, X509 *subject)
{
X509 *cert = 0;
AUTHORITY_KEYID *akid;
X509_NAME *name = X509_get_issuer_name(subject);
/*
* The subject name is never a NULL object unless we run out of memory.
* It may be an empty sequence, but the containing object always exists
* and its storage is owned by the certificate itself.
*/
if (name == 0 || (cert = X509_new()) == 0)
msg_fatal("Out of memory");
/*
* Record the depth of the intermediate wrapper certificate, logged in
* the verify callback.
*/
if (TLScontext->tadepth < 0) {
TLScontext->tadepth = depth + 1;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH))
msg_info("%s: depth=%d chain is trust-anchor signed",
TLScontext->namaddr, depth);
}
akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
ERR_clear_error();
/*
* If key is NULL generate a self-signed root CA, with key "signkey",
* otherwise an intermediate CA signed by above.
*
* CA cert valid for +/- 30 days.
*/
if (!X509_set_version(cert, 2)
|| !set_serial(cert, akid, subject)
|| !set_issuer_name(cert, akid)
|| !X509_gmtime_adj(X509_getm_notBefore(cert), -30 * 86400L)
|| !X509_gmtime_adj(X509_getm_notAfter(cert), 30 * 86400L)
|| !X509_set_subject_name(cert, name)
|| !X509_set_pubkey(cert, key ? key : signkey)
|| !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
|| (key && !add_akid(cert, akid))
|| !add_skid(cert, akid)
|| (wrap_signed && !X509_sign(cert, signkey, signmd))) {
tls_print_errors();
msg_fatal("error generating DANE wrapper certificate");
}
if (akid)
AUTHORITY_KEYID_free(akid);
if (key && wrap_signed) {
wrap_key(TLScontext, depth + 1, 0, cert);
grow_chain(TLScontext, UNTRUSTED, cert);
} else
grow_chain(TLScontext, TRUSTED, cert);
if (cert)
X509_free(cert);
}
/* wrap_cert - wrap "tacert" as trust-anchor. */
static void wrap_cert(TLS_SESS_STATE *TLScontext, X509 *tacert, int depth)
{
X509 *cert;
int len;
unsigned char *asn1;
unsigned char *buf;
if (TLScontext->tadepth < 0)
TLScontext->tadepth = depth + 1;
if (TLScontext->log_mask & (TLS_LOG_VERBOSE | TLS_LOG_CERTMATCH))
msg_info("%s: depth=%d trust-anchor certificate",
TLScontext->namaddr, depth);
/*
* If the TA certificate is self-issued, use it directly.
*/
if (!wrap_signed || X509_check_issued(tacert, tacert) == X509_V_OK) {
grow_chain(TLScontext, TRUSTED, tacert);
return;
}
/* Deep-copy tacert by converting to ASN.1 and back */
len = i2d_X509(tacert, NULL);
asn1 = buf = (unsigned char *) mymalloc(len);
i2d_X509(tacert, &buf);
if (buf - asn1 != len)
msg_panic("i2d_X509 failed to encode TA certificate");
buf = asn1;
cert = d2i_X509(0, (D2I_const unsigned char **) &buf, len);
if (!cert || (buf - asn1) != len)
msg_panic("d2i_X509 failed to decode TA certificate");
myfree((void *) asn1);
grow_chain(TLScontext, UNTRUSTED, cert);
/* Sign and wrap TA cert with internal "signkey" */
if (!X509_sign(cert, signkey, signmd)) {
tls_print_errors();
msg_fatal("error generating DANE wrapper certificate");
}
wrap_key(TLScontext, depth + 1, signkey, cert);
X509_free(cert);
}
/* ta_signed - is certificate signed by a TLSA cert or pkey */
static int ta_signed(TLS_SESS_STATE *TLScontext, X509 *cert, int depth)
{
const TLS_DANE *dane = TLScontext->dane;
EVP_PKEY *pk;
TLS_PKEYS *k;
TLS_CERTS *x;
int done = 0;
/*
* First check whether issued and signed by a TA cert, this is cheaper
* than the bare-public key checks below, since we can determine whether
* the candidate TA certificate issued the certificate to be checked
* first (name comparisons), before we bother with signature checks
* (public key operations).
*/
for (x = dane->certs; !done && x; x = x->next) {
if (X509_check_issued(x->cert, cert) == X509_V_OK) {
if ((pk = X509_get_pubkey(x->cert)) == 0)
continue;
/* Check signature, since some other TA may work if not this. */
if ((done = (X509_verify(cert, pk) > 0)) != 0)
wrap_cert(TLScontext, x->cert, depth);
EVP_PKEY_free(pk);
}
}
/*
* With bare TA public keys, we can't check whether the trust chain is
* issued by the key, but we can determine whether it is signed by the
* key, so we go with that.
*
* Ideally, the corresponding certificate was presented in the chain, and we
* matched it by its public key digest one level up. This code is here
* to handle adverse conditions imposed by sloppy administrators of
* receiving systems with poorly constructed chains.
*
* We'd like to optimize out keys that should not match when the cert's
* authority key id does not match the key id of this key computed via
* the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
* ASN1 tag and length thus also excluding the unused bits field that is
* logically part of the length). However, some CAs have a non-standard
* authority keyid, so we lose. Too bad.
*
* This may push errors onto the stack when the certificate signature is not
* of the right type or length, throw these away.
*/
for (k = dane->pkeys; !done && k; k = k->next)
if ((done = (X509_verify(cert, k->pkey) > 0)) != 0)
wrap_key(TLScontext, depth, k->pkey, cert);
else
ERR_clear_error();
return (done);
}
/* set_trust - configure for DANE validation */
static void set_trust(TLS_SESS_STATE *TLScontext, X509_STORE_CTX *ctx)
{
int n;
int i;
int match;
int depth = 0;
EVP_PKEY *takey;
X509 *ca;
X509 *cert = X509_STORE_CTX_get0_cert(ctx);
x509_stack_t *in = X509_STORE_CTX_get0_untrusted(ctx);
/* shallow copy */
if ((in = sk_X509_dup(in)) == 0)
msg_fatal("out of memory");
/*
* At each iteration we consume the issuer of the current cert. This
* reduces the length of the "in" chain by one. If no issuer is found,
* we are done. We also stop when a certificate matches a TA in the
* peer's TLSA RRset.
*
* Caller ensures that the initial certificate is not self-signed.
*/
for (n = sk_X509_num(in); n > 0; --n, ++depth) {
for (i = 0; i < n; ++i)
if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
break;
/*
* Final untrusted element with no issuer in the peer's chain, it may
* however be signed by a pkey or cert obtained via a TLSA RR.
*/
if (i == n)
break;
/* Peer's chain contains an issuer ca. */
ca = sk_X509_delete(in, i);
/* Is it a trust anchor? */
match = tls_dane_match(TLScontext, TLS_DANE_TA, ca, depth + 1);
if (match) {
switch (match) {
case MATCHED_CERT:
wrap_cert(TLScontext, ca, depth);
break;
case MATCHED_PKEY:
if ((takey = X509_get_pubkey(ca)) == 0)
msg_panic("trust-anchor certificate has null pkey");
wrap_key(TLScontext, depth, takey, cert);
EVP_PKEY_free(takey);
break;
default:
msg_panic("unexpected tls_dane_match result: %d", match);
}
cert = 0;
break;
}
/* Add untrusted ca. */
grow_chain(TLScontext, UNTRUSTED, ca);
/* Final untrusted self-signed element? */
if (X509_check_issued(ca, ca) == X509_V_OK) {
cert = 0;
break;
}
/* Restart with issuer as subject */
cert = ca;
}
/*
* When the loop exits, if "cert" is set, it is not self-signed and has
* no issuer in the chain, we check for a possible signature via a DNS
* obtained TA cert or public key. Otherwise, we found no TAs and no
* issuer, so set an empty list of TAs.
*/
if (!cert || !ta_signed(TLScontext, cert, depth)) {
/* Create empty trust list if null, else NOP */
grow_chain(TLScontext, TRUSTED, 0);
}
/* shallow free */
if (in)
sk_X509_free(in);
}
/* dane_cb - wrap chain verification for DANE */
static int dane_cb(X509_STORE_CTX *ctx, void *app_ctx)
{
const char *myname = "dane_cb";
TLS_SESS_STATE *TLScontext = (TLS_SESS_STATE *) app_ctx;
X509 *cert = X509_STORE_CTX_get0_cert(ctx);
/*
* Degenerate case: depth 0 self-signed cert.
*
* XXX: Should we suppress name checks, ... when the leaf certificate is a
* TA. After all they could sign any name they want. However, this
* requires a bit of additional code. For now we allow depth 0 TAs, but
* then the peer name has to match.
*/
if (X509_check_issued(cert, cert) == X509_V_OK) {
/*
* Empty untrusted chain, could be NULL, but then ABI check less
* reliable, we may zero some other field, ...
*/
grow_chain(TLScontext, UNTRUSTED, 0);
if (tls_dane_match(TLScontext, TLS_DANE_TA, cert, 0)) {
TLScontext->tadepth = 0;
grow_chain(TLScontext, TRUSTED, cert);
} else
grow_chain(TLScontext, TRUSTED, 0);
} else {
set_trust(TLScontext, ctx);
}
/*
* Check that setting the untrusted chain updates the expected structure
* member at the expected offset.
*/
X509_STORE_CTX_set0_trusted_stack(ctx, TLScontext->trusted);
X509_STORE_CTX_set0_untrusted(ctx, TLScontext->untrusted);
if (X509_STORE_CTX_get0_untrusted(ctx) != TLScontext->untrusted)
msg_panic("%s: OpenSSL ABI change", myname);
return X509_verify_cert(ctx);
}
/* tls_dane_set_callback - set or clear verification wrapper callback */
void tls_dane_set_callback(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext)
{
if (ta_support && TLS_DANE_HASTA(TLScontext->dane))
SSL_CTX_set_cert_verify_callback(ctx, dane_cb, (void *) TLScontext);
else
SSL_CTX_set_cert_verify_callback(ctx, 0, 0);
}
#ifdef TEST
#include <unistd.h>
#include <stdarg.h>
#include <mail_params.h>
#include <mail_conf.h>
#include <msg_vstream.h>
static int verify_chain(SSL *ssl, x509_stack_t *chain, TLS_SESS_STATE *tctx)
{
int ret;
X509 *cert;
X509_STORE_CTX *store_ctx;
SSL_CTX *ssl_ctx = SSL_get_SSL_CTX(ssl);
X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx);
int store_ctx_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
cert = sk_X509_value(chain, 0);
if ((store_ctx = X509_STORE_CTX_new()) == NULL) {
SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!X509_STORE_CTX_init(store_ctx, store, cert, chain)) {
X509_STORE_CTX_free(store_ctx);
return 0;
}
X509_STORE_CTX_set_ex_data(store_ctx, store_ctx_idx, ssl);
X509_STORE_CTX_set_default(store_ctx, "ssl_server");
X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(store_ctx),
SSL_get0_param(ssl));
if (SSL_get_verify_callback(ssl))
X509_STORE_CTX_set_verify_cb(store_ctx, SSL_get_verify_callback(ssl));
ret = dane_cb(store_ctx, tctx);
SSL_set_verify_result(ssl, X509_STORE_CTX_get_error(store_ctx));
X509_STORE_CTX_free(store_ctx);
return (ret);
}
static void add_tlsa(TLS_DANE *dane, char *argv[])
{
char *digest;
X509 *cert = 0;
BIO *bp;
unsigned char *buf;
unsigned char *buf2;
int len;
uint8_t u = atoi(argv[1]);
uint8_t s = atoi(argv[2]);
const char *mdname = argv[3];
EVP_PKEY *pkey;
/* Unsupported usages are fatal */
switch (u) {
case DNS_TLSA_USAGE_TRUST_ANCHOR_ASSERTION:
case DNS_TLSA_USAGE_DOMAIN_ISSUED_CERTIFICATE:
break;
default:
msg_fatal("unsupported certificate usage %u", u);
}
/* Unsupported selectors are fatal */
switch (s) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
break;
default:
msg_fatal("unsupported selector %u", s);
}
/* Unsupported digests are fatal */
if (*mdname && !tls_validate_digest(mdname))
msg_fatal("unsupported digest algorithm: %s", mdname);
if ((bp = BIO_new_file(argv[4], "r")) == NULL)
msg_fatal("error opening %s: %m", argv[4]);
if (!PEM_read_bio_X509(bp, &cert, 0, 0)) {
tls_print_errors();
msg_fatal("error loading certificate from %s: %m", argv[4]);
}
BIO_free(bp);
/*
* Extract ASN.1 DER form of certificate or public key.
*/
switch (s) {
case DNS_TLSA_SELECTOR_FULL_CERTIFICATE:
len = i2d_X509(cert, NULL);
buf2 = buf = (unsigned char *) mymalloc(len);
i2d_X509(cert, &buf2);
if (!*mdname)
ta_cert_insert(dane, cert);
break;
case DNS_TLSA_SELECTOR_SUBJECTPUBLICKEYINFO:
pkey = X509_get_pubkey(cert);
len = i2d_PUBKEY(pkey, NULL);
buf2 = buf = (unsigned char *) mymalloc(len);
i2d_PUBKEY(pkey, &buf2);
if (!*mdname)
ta_pkey_insert(dane, pkey);
EVP_PKEY_free(pkey);
break;
}
OPENSSL_assert(buf2 - buf == len);
digest = tls_data_fprint((char *) buf, len, *mdname ? mdname : signalg);
dane_add(dane, u, s, *mdname ? mdname : signalg, digest);
myfree((void *) digest);
myfree((void *) buf);
}
static x509_stack_t *load_chain(const char *chainfile)
{
BIO *bp;
char *name = 0;
char *header = 0;
unsigned char *data = 0;
long len;
int count;
char *errtype = 0; /* if error: cert or pkey? */
x509_stack_t *chain;
typedef X509 *(*d2i_X509_t) (X509 **, const unsigned char **, long);
if ((chain = sk_X509_new_null()) == 0) {
perror("malloc");
exit(1);
}
/*
* On each call, PEM_read() wraps a stdio file in a BIO_NOCLOSE bio,
* calls PEM_read_bio() and then frees the bio. It is just as easy to
* open a BIO as a stdio file, so we use BIOs and call PEM_read_bio()
* directly.
*/
if ((bp = BIO_new_file(chainfile, "r")) == NULL) {
fprintf(stderr, "error opening chainfile: %s: %m\n", chainfile);
exit(1);
}
/* Don't report old news */
ERR_clear_error();
for (count = 0;
errtype == 0 && PEM_read_bio(bp, &name, &header, &data, &len);
++count) {
const unsigned char *p = data;
if (strcmp(name, PEM_STRING_X509) == 0
|| strcmp(name, PEM_STRING_X509_TRUSTED) == 0
|| strcmp(name, PEM_STRING_X509_OLD) == 0) {
d2i_X509_t d;
X509 *cert;
d = strcmp(name, PEM_STRING_X509_TRUSTED) ? d2i_X509_AUX : d2i_X509;
if ((cert = d(0, &p, len)) == 0 || (p - data) != len)
errtype = "certificate";
else if (sk_X509_push(chain, cert) == 0) {
perror("malloc");
exit(1);
}
} else {
fprintf(stderr, "unexpected chain file object: %s\n", name);
exit(1);
}
/*
* If any of these were null, PEM_read() would have failed.
*/
OPENSSL_free(name);
OPENSSL_free(header);
OPENSSL_free(data);
}
BIO_free(bp);
if (errtype) {
tls_print_errors();
fprintf(stderr, "error reading: %s: malformed %s", chainfile, errtype);
exit(1);
}
if (ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) {
/* Reached end of PEM file */
ERR_clear_error();
if (count > 0)
return chain;
fprintf(stderr, "no certificates found in: %s\n", chainfile);
exit(1);
}
/* Some other PEM read error */
tls_print_errors();
fprintf(stderr, "error reading: %s\n", chainfile);
exit(1);
}
static void usage(const char *progname)
{
fprintf(stderr, "Usage: %s certificate-usage selector matching-type"
" certfile \\\n\t\tCAfile chainfile hostname [certname ...]\n",
progname);
fprintf(stderr, " where, certificate-usage = TLSA certificate usage,\n");
fprintf(stderr, "\t selector = TLSA selector,\n");
fprintf(stderr, "\t matching-type = empty string or OpenSSL digest algorithm name,\n");
fprintf(stderr, "\t PEM certfile provides certificate association data,\n");
fprintf(stderr, "\t PEM CAfile contains any usage 0/1 trusted roots,\n");
fprintf(stderr, "\t PEM chainfile = server chain file to verify\n");
fprintf(stderr, "\t hostname = destination hostname,\n");
fprintf(stderr, "\t each certname augments the hostname for name checks.\n");
exit(1);
}
/* match_servername - match servername against pattern */
static int match_servername(const char *certid, ARGV *margv)
{
const char *domain;
const char *parent;
int match_subdomain;
int i;
int idlen;
int domlen;
/*
* XXX EAI support.
*/
/*
* Match the certid against each pattern until we find a match.
*/
for (i = 0; i < margv->argc; ++i) {
match_subdomain = 0;
domain = margv->argv[i];
if (*domain == '.' && domain[1] != '\0') {
++domain;
match_subdomain = 1;
}
/*
* Sub-domain match: certid is any sub-domain of hostname.
*/
if (match_subdomain) {
if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
&& certid[idlen - domlen - 1] == '.'
&& !strcasecmp(certid + (idlen - domlen), domain))
return (1);
else
continue;
}
/*
* Exact match and initial "*" match. The initial "*" in a certid
* matches one (if var_tls_multi_label is false) or more hostname
* components under the condition that the certid contains multiple
* hostname components.
*/
if (!strcasecmp(certid, domain)
|| (certid[0] == '*' && certid[1] == '.' && certid[2] != 0
&& (parent = strchr(domain, '.')) != 0
&& (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
&& strcasecmp(var_tls_multi_wildcard == 0 ? parent :
parent + domlen - idlen,
certid + 1) == 0))
return (1);
}
return (0);
}
static void check_name(TLS_SESS_STATE *tctx, X509 *cert, ARGV *margs)
{
char *cn;
int matched = 0;
general_name_stack_t *gens;
if (SSL_get_verify_result(tctx->con) != X509_V_OK)
return;
tctx->peer_status |= TLS_CERT_FLAG_TRUSTED;
gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
if (gens) {
int has_dnsname = 0;
int num_gens = sk_GENERAL_NAME_num(gens);
int i;
for (i = 0; !matched && i < num_gens; ++i) {
const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
const char *dnsname;
if (gn->type != GEN_DNS)
continue;
has_dnsname = 1;
tctx->peer_status |= TLS_CERT_FLAG_ALTNAME;
dnsname = tls_dns_name(gn, tctx);
if (dnsname && *dnsname
&& (matched = match_servername(dnsname, margs)) != 0)
tctx->peer_status |= TLS_CERT_FLAG_MATCHED;
}
sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
if (has_dnsname)
return;
}
cn = tls_peer_CN(cert, tctx);
if (match_servername(cn, margs))
tctx->peer_status |= TLS_CERT_FLAG_MATCHED;
myfree(cn);
}
static void check_print(TLS_SESS_STATE *tctx, X509 *cert)
{
if (TLS_DANE_HASEE(tctx->dane)
&& tls_dane_match(tctx, TLS_DANE_EE, cert, 0))
tctx->peer_status |= TLS_CERT_FLAG_TRUSTED | TLS_CERT_FLAG_MATCHED;
}
static void check_peer(TLS_SESS_STATE *tctx, X509 *cert, int argc, char **argv)
{
ARGV match;
tctx->peer_status |= TLS_CERT_FLAG_PRESENT;
check_print(tctx, cert);
if (!TLS_CERT_IS_MATCHED(tctx)) {
match.argc = argc;
match.argv = argv;
check_name(tctx, cert, &match);
}
}
static SSL_CTX *ctx_init(const char *CAfile)
{
SSL_CTX *client_ctx;
tls_param_init();
tls_check_version();
#if OPENSSL_VERSION_NUMBER < 0x10100000L
SSL_load_error_strings();
SSL_library_init();
#endif
if (!tls_validate_digest(LN_sha1))
msg_fatal("%s digest algorithm not available", LN_sha1);
if (TLScontext_index < 0)
if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0)
msg_fatal("Cannot allocate SSL application data index");
ERR_clear_error();
if ((client_ctx = SSL_CTX_new(TLS_client_method())) == 0)
msg_fatal("cannot allocate client SSL_CTX");
SSL_CTX_set_verify_depth(client_ctx, 5);
if (tls_set_ca_certificate_info(client_ctx, CAfile, "") < 0) {
tls_print_errors();
msg_fatal("cannot load CAfile: %s", CAfile);
}
SSL_CTX_set_verify(client_ctx, SSL_VERIFY_NONE,
tls_verify_certificate_callback);
return (client_ctx);
}
int main(int argc, char *argv[])
{
SSL_CTX *ssl_ctx;
TLS_SESS_STATE *tctx;
x509_stack_t *chain;
var_procname = mystrdup(basename(argv[0]));
set_mail_conf_str(VAR_PROCNAME, var_procname);
msg_vstream_init(var_procname, VSTREAM_OUT);
if (argc < 8)
usage(argv[0]);
ssl_ctx = ctx_init(argv[5]);
if (!tls_dane_avail())
msg_fatal("DANE TLSA support not available");
tctx = tls_alloc_sess_context(TLS_LOG_NONE, argv[7]);
tctx->namaddr = argv[7];
tctx->mdalg = LN_sha1;
tctx->dane = tls_dane_alloc();
if ((tctx->con = SSL_new(ssl_ctx)) == 0
|| !SSL_set_ex_data(tctx->con, TLScontext_index, tctx)) {
tls_print_errors();
msg_fatal("Error allocating SSL connection");
}
SSL_set_connect_state(tctx->con);
add_tlsa((TLS_DANE *) tctx->dane, argv);
tls_dane_set_callback(ssl_ctx, tctx);
/* Verify saved server chain */
chain = load_chain(argv[6]);
verify_chain(tctx->con, chain, tctx);
check_peer(tctx, sk_X509_value(chain, 0), argc - 7, argv + 7);
tls_print_errors();
msg_info("%s %s", TLS_CERT_IS_MATCHED(tctx) ? "Verified" :
TLS_CERT_IS_TRUSTED(tctx) ? "Trusted" : "Untrusted", argv[7]);
return (TLS_CERT_IS_MATCHED(tctx) ? 0 : 1);
}
#endif /* TEST */
#endif /* USE_TLS */